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LETTER TO THE EDITOR 

Global solution to the scalar inverse scattering problem 

R H T Bates 
Electrical Engineering Department, University of Canterbury, Christchurch, New Zealand 

Received 10 June 1975 

Abstract. Given the scalar fields incident upon and scattered from a finite inhomogeneous 
region exhibiting Arbitrary spatial variations of refractive index, it is shown how to construct 
a determinant which depends only on the refractive index within the scattering region and the 
fields outside this region. The analysis is simpler, and of wider applicability, than the Gel'fand- 
Levitan technique. 

Approximate solutions to inverse scattering problems can be based on geometrical 
optics, on Kirchhoff's approach to diffraction theory and on the Born approximation; 
certain problems involving totally reflecting scatterers can be treated (apparently) 
exactly by analytic continuation techniques ; but all reported rigorous solutions for 
penetrable scattering bodies derive from the method of Gel'fand and Levitan (called 
GL hereafter, refer to Colin 1972 for comprehensive reviews). The GL technique has not 
been extended beyond wave mechanical scattering from a non-local potential (Kay and 
Moses 1961), which is not as general as the scattering of scalar waves from a medium 
exhibiting arbitrary spatial variations of refractive index, as Prosser remarks in chapter 6 
of Colin (1972). The intricacy of GL is quite extraordinary (cf Newton 1966), which may 
explain why GL has never been extended to the general case. 

A comparatively simple global method is introduced here. It has the advantages 
that it can be applied to any kind of linear scalar wave motion and to  scattering bodies 
that exhibit arbitrary spatial variations and are explicitly of finite size, and it can make 
use of scattering data spanning restricted frequency ranges (energy ranges in quantum 
mechanics). In order to clarify this first account as much as possible, while treating a 
problem beyond the capabilities of previously reported techniques, the analysis is restric- 
ted to two-dimensional macroscopic wave motion (eg the diffraction of acoustic or 
electrically or magnetically polarized electromagnetic cylindrical waves). 

A point 0 in the two-dimensional space is taken as origin for the polar coordinates 
r and 8. A scalar field, represented by the wavefunction $ = $(r ,O,k) ,  propagates 
throughout space, which is free (ie, its refractive index is unity) everywhere except within 
a scattering region enclosed by the circle centred on 0 of radius a.  The wavefunction 
satisfies 

The time factor exp(iot) is suppressed, where o is the angular frequency, k = w/c is the 
wavenumber and c is the wave speed in free space. The quantity v describes the spatial 
inhomogeneity of the scattering region : 

V2$+kZv$ = 0.  (1) 
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It is convenient to decompose $ into partial waves 
m 

$ = $m(r ,  k )  exp(im6). 
m =  -CO 

(3) 

A known fieid is incident upon the scattering region and the scattered field is observed 
for all 8 at some r 2 a. Since (1) and (2) ensure that the scattered part of $, must be 
proportional to the ‘outgoing’ Hankel function of order m and argument kr,  for r 2 a, it 
follows that the impedance vector Z = Z(k) can be computed directly from observation, 
where the mth component of Z is 

The inverse scattering problem is posed as : find v for all r < a, given Z. 
Provided that vis not zero or infinite at 0- the position of Ocan be adjusted (thereby 

increasing a) to ensure this-the behaviour of $,,, must mimic that of the cylindrical 
Bessel function J,(yr) as r 3 0, where y depends only upon k-Newton’s (1966,chapter 12) 
discussion of three-dimensional scatterers and spherical Bessel functions can be adapted 
straightforwardly to the present two-dimensional case. So each $m can be written as 

where, on account of (4) and the required behaviour of $, as r -+ 0,  

41 ,m = Jm(h1,mr/a) ; J m ( h 1 , m )  = (h,,m/a)ZmJ6(h,,m) (6) 

where the prime denotes the derivative. Note that h,,, = h,,,(k) since Z ,  is a function of k.  
The theory of Dini series (Watson 1958) indicates that, for fixed m, the &,, form an 
orthogonal set in the range 0 < r ,< a ; and because of (6) they are those eigenfinctions of 
the mth partial waue which incorporate the scattering data. 

It is convenient to write (v - 1) as an angular trigonometrical Fourier series 

CO 

v = 1 + v,(r)exp(ine), r < a  
n = - m  

and to express each v,, as a conventional Fourier-Bessel series (Watson 1958) 

(7) 

so that the inverse scattering problem reduces to finding the constants 
tities 

The quan- 

Nt,m(k) = J I$l,m(ry k)12r dr 
0 

are needed later (the asterisk denotes the complex conjugate). 
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It followsfrom(1),(3),(5),(6), theorthogonalityoftheexp(im6)in therange0 < 8 < 277 
and the form of Bessel’s differential equation that 

n m  

I = 1  m = - m  

so that (7) through (10) and the orthogonality of the show that 

i m 5 ( [k2 - (‘1,,m,/a)~lN,,,m’61,,,6m,m, + k 2  A m ,  - m , p X f , l ’ . m , m ’ , m ’  - m , p  b 1 . m  = 0 (12) 
1=1 m = - m  p =  1 

where I’ is any non-negative integer, m‘ is any integer and 6,, is the Kronecker delta. 
Now (12) is an infinite system of linear algebraic equations for the b,,,,, and it possesses 
a non-trivial solution only if the determinant-called here the inverse scattering deter- 
m i n a n t - o f  the coefficients of the b1,,,  is zero. 

The remarkable thing about the inverse scattering determinant is that it depends only 
upon the unknown constants A n , p  and the observed scattering data. The behaviour of 
the wavefunction within the scattering region (characterized by the b[,,,) has been elimi- 
nated. The evaluation of the is a multiple eigenvalue problem of non-standard 
type. However, unless the behaviour of v for r e a is physically unreasonable, only a 
finite number, M say, of the will be needed to reconstruct v to within a given tolerance. 
This implies that the M significant can be found to the required accuracy by trun- 
cating the determinant to order M (cf Kantorovich and Krylov 1958) and examining it 
at M values of k ,  within the range of frequencies for which scattering data are available. 
Several interesting numerical questions have emerged and we are currently investigating 
them. 
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